Identification and validation of QTLs for seedling salinity tolerance in introgression lines of a salt tolerant rice landrace ‘Pokkali’
نویسندگان
چکیده
Salinity is a major threat to rice production worldwide. Several studies have been conducted to elucidate the molecular basis of salinity tolerance in rice. However, the genetic information such as quantitative trait loci (QTLs) and molecular markers, emanating from these studies, were rarely exploited for marker-assisted breeding. To better understand salinity tolerance and to validate previously reported QTLs at seedling stage, a set of introgression lines (ILs) of a salt tolerant donor line 'Pokkali' developed in a susceptible high yielding rice cultivar 'Bengal' background was evaluated for several morphological and physiological traits under salt stress. Both SSR and genotyping-by-sequencing (GBS) derived SNP markers were utilized to characterize the ILs and identify QTLs for traits related to salinity tolerance. A total of eighteen and thirty-two QTLs were detected using SSR and SNP markers, respectively. At least fourteen QTLs detected in the RIL population developed from the same cross were validated in IL population. Analysis of phenotypic responses, genomic composition, and QTLs present in the tolerant ILs suggested that the mechanisms of tolerance could be Na+ dilution in leaves, vacuolar Na+ compartmentation, and possibly synthesis of compatible solutes. Our results emphasize the use of salt injury score (SIS) QTLs in marker-assisted breeding to improve salinity tolerance. The tolerant lines identified in this study will serve as improved breeding materials for transferring salinity tolerance without the undesirable traits of Pokkali. Additionally, the lines will be useful for fine mapping and map-based cloning of genes responsible for salinity tolerance.
منابع مشابه
Identification and Mapping of Quantitative Trait Loci Associated with Salinity Tolerance in Rice (Oryza Sativa) Using SSR Markers
Salinity stress is one of the most widespread soil problems next to drought, in rice growing areas. ReducingSodium (Na+), while maintaining Potassium (K+) uptake in rice are traits that would aid in salinity tolerance.Therefore, the identification of quantitative trait loci (QTLs) associated with those for Na+ and K+uptake, will enable breeders to use marker-assisted selection...
متن کاملGenetic Structure of Salinity Tolerance in Rice at Seedling Stage
The Oryza sativa L. F8 population derived from a cross between salt tolerance cv. Ahlemi Tarom and salt sensitive cv. Neda was used in the study. Germinated seeds floated on water for 3 d, and after were transferred to float on Yoshida's nutrient solution for 11 d. two weeks after sowing, the seedling was transferred to nutrient solution containing 51.19 mM NaCl (electrical conductivity 6 dSm-1...
متن کاملEvaluation of salinity tolerance in rice genotypes
Salinity is considered as one of important physical factors influencing rice (Oryza sativa L.) production. Knowledge of salinity effects on rice seedling growth and yieldcomponents would improve management practices in fields andincrease our understanding of salt tolerance mechanisms in rice. This study was designed to assess the role of Saltol QTL in regards to effects of salinity on plant gro...
متن کاملIntegrated RNA Sequencing and QTL Mapping to Identify Candidate Genes from Oryza rufipogon Associated with Salt Tolerance at the Seedling Stage
Soil salinity is a common abiotic stress affecting crop productivity. To identify favorable alleles from wild rice (Oryza rufipogon Griff.) that enhance salinity tolerance of rice (O. sativa L.), a set of introgression lines (ILs) were developed. The ILs were derived from an O. rufipogon accession collected from Chaling (Hunan Province, China) as the donor, and a widely grown O. sativa indica c...
متن کاملDetermination of QTLs Associated with Agronomic and Physiological Traits under Normal and Salinity Conditions in Barley
mapping the QTLs of agronomic and physiological traits, 149 double haploid (DH) lines from a cross between an Australian cultivar, Clipper (salt susceptible), and an Algerian landrace, Sahara3771 (salt tolerant), were evaluated under natural saline (Yazd Station, ECsoil=10-12.8 ds/m and ECwater= 9-10 ds/m) and normal (Karaj Station, ECsoil and ECwater ~2-2.5 ds/m) environments. There were remar...
متن کامل